
TLCP Specification
Text Lightstreamer Client Protocol

Version: 2.0.0
Target: Lightstreamer Server v. 6.1 or greater

Last updated: 04/01/2017

Table of contents

1 INTRODUCTION..5

 Protocol Versions..5

 Main Concepts..5

 Transports...6

 Session Life Cycle..6

 Subscription Data Model...7

 Requests, Responses, and Notifications..9

 Request Syntax..9
 HTTP Transport..9

 WS Transport..10

 Common Response and Notification Syntax...11

2 WORKFLOW EXAMPLES...13

 Basic Subscription..13

 Double Subscription..14

 Field Schema Change..15

 Session Rebinding..17
 HTTP Loop and Rebind..17

 HTTP Loop and Failed Rebind...18

 WS Long Polling...19

3 REQUEST/RESPONSE REFERENCE...20

 Session Creation Request..20

 Session Binding Request..22

 Session Creation and Binding Responses..23
 Successful Session Creation or Binding Response..23

 Other Session Creation or Binding Responses..24

 Control Requests..25
 Common Parameters...25

 Subscription Request...26

 Unsubscription Request...28

 Subscription Reconfiguration Request...28

 Session Constrain Request..29

 Force Session Rebind Request..30

 Session Destroy Request...31

 Message Send Request..32

 Control Responses...34
 Successful Control Response...34

 Other Control Responses...34

4 NOTIFICATION REFERENCE...36

 Real-Time Update...36

- 2 -

 Decoding the Pipe-Separated List of Values..36

 Notification Examples...37

 Other Subscription-Related Notifications..38
 Successful Subscription...39

 Successful Subscription with Command Mode...39

 Successful Unsubscription...40

 End of Snapshot...40

 Snapshot Clearing..41

 Overflow41

 Subscription Reconfiguration..42

 Message-Related Notifications...42
 Message Successfully Sent..43

 Message Send Failed...43

 Session-Related Notifications...44
 Session Constraints Changed..44

 Time Synchronization...44

 Client IP Address..45

 Server Name..45

 No Operation..45

 Probe (Keep-Alive)...46

 Stream Connection Loop..46

 Stream Connection End...47

5 SPECIAL USE CASES...48

 Session Creation and Control Combo Request..48
 Session Creation and Multiple Control Combo Request...49

 Use of HTTP GET in Place of HTTP POST..50

6 HANDS ON..51

 About cURL..51

 Server Setup...51

 Basic Subscription..52
 Connection and Session Creation..52

 Subscription to an Item...53

 Receive Some Data..54

 Unsubscription from an Item...54

 Disconnection...55

 Session Rebinding..56
 Session Creation and Subscription to Items...56

 Receive Data Until the Content-Length Is Reached...57

 Rebind the Session on a New Stream Connection...58

 Sending And Receiving Messages..58
 Session Creation and Subscription to an Item..58

 Send a Message and Receive its Echo..59

 APPENDIX A: SESSION ERROR CODES...61

- 3 -

 APPENDIX B: CONTROL ERROR CODES..63

 APPENDIX C: SERVER HTTP HEADERS...66

 HTTP Request Headers..66
 General Header Fields...66

 Request Header Fields...66

 Entity Header Fields...67

 HTTP Response Headers...67
 General Header Fields...67

 Response Header Fields..68

 Entity Header Fields...68

- 4 -

1 Introduction

The Text Lightstreamer Client Protocol, or TLCP for short, is the main protocol used by Lightstreamer
clients to connect, receive and send data to a Lightstreamer Server.

NOTE: To fully understand how TLCP works, a general understanding of the main Lightstreamer
concepts is a prerequisite. Terms like Adapter Set, Metadata Adapter, Data Adapter should be familiar.
Knowledge of this components may be obtained by reading the first chapters of the General
Concepts document.

Protocol Versions

The TLCP protocol can evolve over time and it is versioned in the form:

 major.minor.subminor

Example: 2.0.0

The general rule is that if only the subminor version number changes, no upgrades to the
Lightstreamer Server are required to support the new version of TLCP.

Example:

 Lightstreamer Server v. 6.1 is released, with support for TLCP v. 2.0.0.

 Later on, Lightstreamer Server v. 6.2 is released, which, among other things, introduces explicit
support for TLCP v. 2.0.3.

 A client is developed against TLCP v. 2.0.3. Such client is guaranteed to work even if it
connects to Lightstreamer Server v. 6.1, because that server supports TLCP v. 2.0.x.

On the other hand, any new version of Lightstreamer Server is guaranteed to work with any previous
version of TLCP.

Main Concepts

Some of the main concepts of TLCP are the following:

 Communication between client and Server always operates inside the context of a session.
Each session has a specific session ID.

 A session must be bound to a network connection in order to receive downstream real-time
notifications and in particular real-time updates. The connection to which a session is bound
is called the stream connection of that session.

 The session creation request provides both a session and its initial stream connection. The
session may be later bound to a different stream connection with a session binding request.

 Real-time updates are organized into items and fields. The set of items and fields for which
real-time updates are received can be changed by means of session control requests.

- 5 -

 Control requests, depending on the transport, may be sent on separate network connections
or on the session stream connection.

 The control request that adds new items to the set being received is called a subscription. The
opposite control request, that removes items and fields from the set, is called an
unsubscription.

 A specific subset of control requests is dedicated to sending upstream messages.

Transports

TLCP supports two different transports:

 HTTP (and HTTPS).

 WebSocket, or WS for short (and Secure WebSocket, or WSS for short).

The protocol is designed to minimize differences on the two transports, while still leveraging transport-
specific advantages, e.g. with HTTP the stream connection is implemented as an HTTP request
whose response is of (almost) infinite length. On the other hand, since HTTP is a half-duplex
transport, each control request requires a separate connection, parallel to the main stream
connection.

With WS, which is a full-duplex transport, the stream connection is a simple WS connection and
control requests may be sent directly on it, eliminating the connection overhead of HTTP.

Transports may also be mixed: as far as the correct session ID is specified in each control request, a
stream connection on WS may be controlled by control requests on HTTP and vice-versa. Mixing of
transports is actively exploited by official Lightstreamer client libraries to implement the Stream-Sense
algorithm, which automatically discovers the best transport to use at any given moment.

Session Life Cycle

The session may be in one of 2 states:

 Bound to a stream connection;

 Unbound from a stream connection.

When the session is bound, real-time notifications are sent downstream to the stream connection for
the client to consume them. When the session is unbound, they are buffered to be sent later.

A session may become unbound for a number of reasons, e.g.:

 The client may explicitly request it because it is switching to another transport (e.g. from HTTP
to WS).

 The transport may reach some limit (e.g. an HTTP 1.0 response has reached its content-
length).

Once the session is unbound, the client may rebind it to another stream connection with a session
binding request. When this happens, the session restarts sending real-time notifications from where it
stopped. In particular, all subscriptions are automatically restarted, with all their items and fields.

- 6 -

A special use case of session rebinding is a communication mode called long polling, which official
Lightstreamer client libraries adopt with HTTP transport when a network appliance in the middle is
caching the response and blocking real-time notifications.

Long polling works as follows:

1. An initial stream connection is created with a limited life-time (e.g. a few seconds).

2. During this life-time, if real-time notifications are available they are sent and the session is
unbound immediately after that, closing the stream connection. In this way, caching
appliances in the middle flush their cache and notifications can be received with minimum
latency.

3. If no real-time notifications are available, when this life-time expires the Server unbinds the
sessions anyway and closes the stream connection.

4. A new stream connection is immediately re-established by the client with a binding request,
and the loop restarts from point 2.

While it applies particularly well to HTTP cases, this communication mode is transport independent
and may also be applied to WS under particular circumstances, such as to forcibly slow down a
connection with a client that can’t keep up on high frequency updates.

Note that a session may never be bound to more than one stream connection. Moreover, when
unbound, buffering lasts only for a limited (although configurable) amount of time. After that, the
session is discarded and buffered events (and their originating subscriptions) are lost.

The session is also discarded in case of a connection drop, both due to a manual close of the
connection by the client or to a network problem. In these case the client should create a new stream
connection as if it was the first time it connects.

The diagram below shows the set of session states and possible transitions:

Subscription Data Model

As introduced before, a subscription is the operation with which the client asks the Server to send
real-time updates about some items and fields. An unsubscription is the opposite operation: to ask
the Server to stop sending real-time updates about previously subscribed items and fields.

A subscription request requires the following information:

- 7 -

 A client-generated subscription ID. It must be a progressive integer number starting with 1,
and must be unique within the session.

 A group name, i.e. a single variable-length symbolic name that represents the set of items it
wants to subscribe to:

 The mapping between the group name and the corresponding item set is implemented in
the Metadata Adapter.

 A typical example of group is the name of a stock list, e.g. “NASDAQ-100”, which the
Metadata Adapter maps to the list of 100 items composing the NASDAQ 100 list.

 Nothing forbids to use a second-level syntax to express a literal list of items, e.g. “AAPL
MSFT GOOGL”. It’s up to the Metadata Adapter to interpret the group name.

 Note that the same item may be included in multiple groups.

 A schema name, i.e. a single variable-length symbolic name that represents the set of fields it
wants to subscribe to:

 As with the group, the mapping between the schema name and the corresponding field
set is implemented in the Metadata Adapter.

 As with the group, nothing forbids to use a second-level syntax to express a literal list of
fields, e.g. “NAME LAST OPEN MIN MAX”. It’s up to the Metadata Adapter to interpret the
group name.

 A subscription mode that tells the Server how to consider real-time updates for this set of
items:

 With MERGE mode, the subscription represents a fixed table where items are rows
and fields are columns. Each real-time update changes the content of a specific
row.

 A common example is a stock quote table.

 With COMMAND mode, the subscription represents a dynamic table, where items are
rows and fields are columns. Each real-time update may add a new row, delete an
existing row or change the content of a specific row.

 A common example is a stock portfolio.

 With DISTINCT mode, the subscription represents a set of growing tables, where each
item is a separate table and fields are columns. Each real-time update appends a
new row at the end of a specific table.

 A common example is a news feed, with a different news topic for each item.

 For an in-depth discussion about subscription modes see the General Concepts
document.

 Optionally, the name of the Data Adapter that implements the subscribed group.

Once a subscription is active, real-time updates include the following information:

 The subscription ID.

 The progressive number of the item updated. Item numbers are progressive integers starting
with 1.

 The order of items of a certain group is defined by the Metadata Adapter.

- 8 -

 The same item may appear in different groups with a different number. The client is
supposed to know a priori this ordering.

 A list with values of updated fields.

 The order of fields of a certain schema is defined by the Metadata Adapter.

Finally, an unsubscription request requires just the following information:

 The subscription ID.

Requests, Responses, and Notifications

General rules apply on request and response handling:

 Control requests are always identified by a client-generated request ID. It may be any
combination of letters and numbers, but typically a progressive number will do, and must be
unique within the connection.

 It needs to be unique only within a reasonable amount of time, e.g. a few minutes. The
Server will never respond to a request with a delay of several minutes. If you use a
progressive integer, you can periodically reset the counter to avoid sending long integer
strings.

 Responses (including errors) are always identified by the corresponding request ID, unless the
request syntax was so misleading that a request ID could not be parsed.

 Responses (including errors) are always sent on the same connection the request was sent to:

 If the control request was sent on a separate connection, such as with HTTP transport,
the response is sent on that same connection.

 If the control request was sent on the stream connection, such as with WS transport, the
response is sent on the stream connection.

 If the request was successful, a notification may be sent on the stream connection (if
appropriate for the request).

Request Syntax

Requests follow general rules for query string composition in an HTTP URL, with minor differences for
the HTTP and WS cases.

HTTP Transport
General form is as follows:

POST /lightstreamer/<request-name>.txt?LS_protocol=TLCP-2.0.0 <HTTP-version>
<HTTP-request-headers>
<empty-line>
<param1>=<value1>&...&<paramN>=<valueN>

Where:

- 9 -

 <request-name> determines the kind of request; e.g. “create_session” for session creation
request, “control” for control requests, etc.

 LS_protocol=TLCP-2.0.0 is a required parameter to specify the request protocol.

 <param>=<value> pairs set the parameters of the request; e.g. “LS_reqId=123” to specify the
request ID, or “LS_session=S1aa6c792585db57aT1726545” to specify the session ID.

 <HTTP-version>, <HTTP-request-headers> and <empty-line> are part of the HTTP request
specifications as usual. See Appendix C: HTTP Request Headers for more information on
accepted HTTP headers.

Reserved characters in the value of a parameter (as per section 2.2 of RFC 3896) must be percent-
encoded. The line separator is CR-LF, as per HTTP specification.

In the specific case of control requests, multiple requests may be sent in a single batch with the
following syntax:

POST /lightstreamer/<req-name>.txt?LS_protocol=TLCP-2.0.0[&LS_session=<session-ID>] <HTTP-version>
<HTTP-request-headers>
<empty-line>
<param1>=<value1>&...&<paramN>=<valueN>
...
<param1>=<value1>&...&<paramN>=<valueN>

Where:

 <LS_session>=<session-ID> pair in the query string, if present, acts as a default value for
subsequent requests specified in the body; e.g. “LS_session=S1aa6c792585db57aT1726545” if all
requests act on session ID S1aa6c792585db57aT1726545.

 Each <param1>=<value1>&...&<paramN>=<valueN> line in the request body specifies a
separate control request.

Requests of the same batch are executed concurrently, and responses may arrive out of order.

WS Transport
Open a WebSocket to the Lightstreamer Server, using the URI and subprotocol below:

 URI: /lightstreamer

 Sec-WebSocket-Protocol: TLCP-2.0.0.lightstreamer.com

Once the WS connection has been established, the general form of a request is as follows:

<request-name>
<param1>=<value1>&...&<paramN>=<valueN>

Where:

 <request-name> determines the kind of request; e.g. “create_session” for session creation
request, “control” for control requests, etc.

 <param>=<value> pairs set the parameters of the request; e.g. “LS_reqId=123” to specify the
request ID, or “LS_session=S1aa6c792585db57aT1726545” to specify the session ID.

- 10 -

Each request must be sent in a single WS message. Note that with WS the name extension (e.g.
“.txt”) is missing. Note also that name and parameters are on separate lines. As in the HTTP case,
line separator is CR-LF, and reserved characters in the value of a parameter (as per section 2.2 of
RFC 3896) must be percent-encoded.

With WS, like with HTTP, multiple control requests can be sent in a single batch with the following
syntax:

<request-name>
<param1>=<value1>&...&<paramN>=<valueN>
...
<param1>=<value1>&...&<paramN>=<valueN>

Anyway, consider that since WS is a full-duplex transport, the advantage of sending a batch of
requests is not as evident as in the HTTP case, where the overhead of multiple HTTP connections is
greatly reduced.

Requests of the same batch are executed concurrently, and responses may arrive out of order.
Moreover, with WS, responses may always arrive interspersed with notifications, when control
requests are sent on the stream connection.

Common Response and Notification Syntax

All of requests use a simple syntax for their response, either failed or successful. The same base
syntax is also adopted by notifications on the stream connection. This syntax is as follows:

<tag>,<argument1>,...,<argumentN>

Where:

 <tag> is a short (up to 8 characters) uppercase string identifying the kind of response or
notification.

 <argument1>,...,<argumentN> are the arguments of the specific response or notification.

If an argument contains meta characters, such as the comma, or some other special characters, they
are percent-encoded. The character set is UTF-8, for both encoded and unencoded content. The line
separator is CR-LF.

To simplify parsing, each different tag has a fixed number of arguments. Once you have extracted
the tag by finding the first comma, you know how many other commas are present, and thus how to
extract the following arguments.

Some examples of tags and arguments are:

CONOK,<session-ID>,<request-limit>,<keep-alive>,<control-link>

REQERR,<request-ID>,<error-code>,<error-message>

SUBOK,<subscription-ID>,<num-items>,<num-fields>

MSGFAIL,<sequence>,<prog>

END,<cause-code>,<cause-message>

A simple parsing algorithm is the following:

 Read the HTTP response or the WS message line by line (line separator is CR-LF).

- 11 -

 For each line, trim the trailing line separator and look for the first comma from left to right (it
may not be there).

 The text until the first comma (or the full line, if it’s not there) is the tag.

 Switch on the tag:*

 Each tag has a fixed number of arguments (e.g. for a “REQERR” tag it’s 3).

 Split the remaining part of the string comma by comma, from left to right, to obtain
each argument. Note that the last argument may contain additional commas.

 Percent-decode non-numeric arguments, except for the last argument of a real-time
update (tag “U”).**

 Interpret the response or notification accordingly.

Notes:

[*] The first 4 characters of a tag are unique. If parsing with a programming language that does not
support switching on string literals, the first four characters of a tag (which are all simple Ascii
characters) may be easily mapped to a 32 bit integer and then switch on its corresponding numeral.

E.g. in C language:

#define STR_SWITCH(a,b,c,d) (((a & 0xff) << 24) | \
 ((b & 0xff) << 16) | \
 ((c & 0xff) << 8) | \
 (d & 0xff))

char tag[8] = /* Zero-padded tag read from network */;
unsigned int iTag= STR_SWITCH(tag[0], tag[1], tag[2], tag[3]);
switch (iTag) {

case STR_SWITCH('R','E','Q','O'):
// Handle "REQOK"
break;

case STR_SWITCH('R','E','Q','E'):
// Handle "REQERR"
break;

// ...

}

[**] The last argument of a real-time update is itself a variable-length set of fields, with its own
second-level syntax. To avoid unnecessary encoding of frequently used characters, this argument
follows specific encoding rules and should not be percent-decoded during the first pass.

For more details on its syntax, and a second-level parsing algorithm, see Chapter 4: Real-Time
Update.

- 12 -

2 Workflow Examples

The following diagrams illustrate a few notable examples of TLCP workflow. Diagrams are presented
for both HTTP and WS transports.

Basic Subscription

This workflow shows the simplest client-server interaction:

 The client opens the stream connection with the Server, which accepts the connection.

 Then, the client subscribes to the item item1 (with the related field schema schema1) and the
Server starts sending real-time updates to the client.

 The client unsubscribes from the item item1, the Server stops sending real-time updates.
Note that real-time updates may follow the unsubscription request response, but not the
unsubscription notification.

 Finally the client closes the stream connection.

Basic Subscription - HTTP Transport Basic Subscription - WS Transport

- 13 -

Double Subscription

The following workflow shows a more complex example, that is:

 The client opens the stream connection with the Server.

 The client subscribes to item1 (with the related field schema schema1) and the Server starts
sending real-time updates for item1.

 The client subscribes to item2 (with the related field schema schema2) and the Server starts
sending real-time updates for item2.

 The client unsubscribes from item2, the Server stops sending real-time updates for item2 but
continues sending them for item1.

Double Subscription - HTTP Transport Double Subscription - WS Transport

- 14 -

Field Schema Change

In this workflow, the client decides to change the set of fields for which it is receiving real-time
updates:

 The client opens the stream connection with the Server.

 Then, the client subscribes to item1 (with the related field schema schema1) and the Server
starts sending real-time updates for item1.

 The client decides to change the subscription field schema, so it unsubscribes from item1 (and
the Server stops sending real-time updates for item1) and then re-subscribes to item1 with the
new field schema schema2 (and the Server re-starts sending real-time updates for item1, but
with different fields).

- 15 -

Field Schema Change - HTTP Transport Field Schema Change - WS Transport

- 16 -

Session Rebinding

The following workflows show a few situations where a session needs to be rebound.

HTTP Loop and Rebind
This example shows a rebind as a reaction to reaching the Content-Length of a stream connection that
was requested in HTTP 1.0:

 The client opens the stream connection with the Server.

 Then, the client subscribes to item1 and item2 (with their related field schemas). The Server
starts sending real-time updates for item1 and item2.

 When the Content-Length is reached, the server sends the specific command Loop and closes
the connection. The client rebinds the session to a new stream connection and real-time
updates restart.

Loop and Rebind - HTTP Transport

- 17 -

HTTP Loop and Failed Rebind
This case shows how to react to a rebind failure. In fact, The rebinding operation may fail for a number
of reasons, e.g.:

 If too much time passes since the end of the previous stream connection, the Server deletes
the old session.

 If there is a cluster of Lightstreamer Server behind a load balancer, it is possible that for the
new stream connection the client is connected to a different Server that will not recognize the
old session (see the Clustering document on how to avoid it).

In this situation, the client should create a new stream connection, as if it was the first time it
connects to the Server, and re-execute all the subscriptions that were active at the moment the
previous stream connection terminated.

Loop and Failed Rebind - HTTP Transport

- 18 -

WS Long Polling
When a WS stream connection needs to be rebound, the server sends the Loop command exactly as
in the HTTP case, but it does not close the connection. The client is free to choose whether to
rebind the session to the same stream connection or open a new one.

This difference with HTTP is due to the different use cases where rebinding is applied:

 With HTTP rebinding is usually due to an exhausted or malfunctioning stream connection. In
both case keeping the connection open wouldn’t help.

 With WS rebinding is usually unnecessary. As described in Chapater 1, official Lightstreamer
client libraries use it as an expedient to slow down real-time updates in a client that can’t keep
up with the Server.

In this workflow:

 The client opens the stream connection with the Server and subscribes to item1 and item2.
The Server starts sending real-time updates for item1 and item2.

 When the poll cycle ends, the server sends the Loop command and unbinds the session. The
client then rebinds the session to the same stream connection and real-time updates restart.

Loop and Rebind - WS Transport

- 19 -

3 Request/Response Reference

This chapter details the complete syntax reference for all TLCP requests and responses. The general
syntax is discussed in Chapter 1: Request Syntax, together with a sample algorithm for response
parsing. The syntax is reported here for your convenience:

 Requests general syntax for HTTP transport:

POST /lightstreamer/<req-name>.txt?LS_protocol=TLCP-2.0.0[&LS_session=<session-ID>] <HTTP-version>
<HTTP-request-headers>
<empty-line>
<param1>=<value1>&...&<paramN>=<valueN>
...
<param1>=<value1>&...&<paramN>=<valueN>

 Requests general syntax for WS transport:

<req-name>
<param1>=<value1>&...&<paramN>=<valueN>
...
<param1>=<value1>&...&<paramN>=<valueN>

Reserved characters (as per section 2.2 of RFC 3896) in the value of a parameter must be percent-
encoded.

 Responses and notifications general syntax (with HTTP transport the response is in the body
of the HTTP response):

<tag>,<argument1>,...,<argumentN>

Line separator is CR-LF. Encoding is UTF-8.

Session Creation Request

A session creation request provides the means to obtain an initial session ID and an initial stream
connection to receive real-time notifications.

It is defined as follows:

 Request name: create_session

 Parameters:

 LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg

Client identifier. Must be set with the special string mgQkwtwdysogQz2BJ4Ji%20kOj2Bg for
all custom developed clients.

 LS_user

Optional. User name (used for authentication). This string should be interpreted and
verified by the Metadata Adapter, so the developer is free to decide its meaning. In
simplified scenarios, the argument can be omitted, but authentication is still requested to
the Metadata Adapter and a null user name is specified.

 LS_password

- 20 -

Optional. User password (used for authentication). This string should be interpreted
and verified by the Metadata Adapter, so the developer is free to decide its meaning.

 LS_adapter_set

Optional. Logical name that identifies the Adapter Set (i.e. the Metadata Adapter and
the related Data Adapters) that will serve and provide data for this stream connection. If
omitted, an adapter set named “DEFAULT” is assumed.

 LS_requested_max_bandwidth

Optional. Maximum bandwidth requested by the client, expressed in kbps (it can be a
decimal number, with a dot as decimal separator). See the General Concepts document
for more information.

 LS_content_length

Optional. Content-Length to be used for the connection content, expressed in bytes. If
too low or not present, the Content-Length is assigned by Lightstreamer Server, based
on its own configuration.

 LS_polling

Optional. Requests a polling connection. If set to true, the Server will send only the
notifications that are ready at connection time and will exit immediately, keeping the
session active for subsequent rebind requests.

 LS_polling_millis

Only if LS_polling is true. Expected time between the closing of the connection and the
next polling connection, expressed in milliseconds. Required by the Server in order to
ensure that the underlying session is kept active across polling connections. If too high,
the Server may apply a configured maximum time. Anyway, the timeout used is notified
to the client in the response.

 LS_idle_millis

Only if LS_polling is true. Optional. Time the Server is allowed to wait for a
notification, if none is present at request time, expressed in milliseconds. If zero or not
specified, the Server response will be synchronous and might be empty. If positive, the
Server response will be asynchronous and, if the specified timeout expires, might be
empty. If too high, the Server may apply a configured maximum time.

 LS_keepalive_millis

Only if LS_polling is not true. Optional. Longest inactivity time allowed for the
connection, expressed in milliseconds. If such a long inactivity occurs, the Server sends
a keepalive message (i.e. a PROBE notification). If too low, the Server may apply a
configured minimum time. If too high, the Server will apply a configured maximum time. If
not present, the keepalive time is decided by the Server, based on its own configuration.
Anyway, the keepalive time used is notified to the client in the response.

 LS_send_sync

Only if LS_polling is not true. Optional. If set to false, instructs the Server not to send
the SYNC notifications on this connection. If omitted, the default is true.

Request example with HTTP transport:

POST /lightstreamer/create_session.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 65
Content-Type: text/plain

LS_user=user&LS_password=password&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg

- 21 -

Request example with WS transport:

create_session
LS_user=user&LS_password=password&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg

See Session Creation and Binding Responses section in this chapter for sample responses.

Session Binding Request

A session binding request provides the means to rebind an existing session ID to a new stream
connection and restart the flow of real-time updates and notifications.

It is defined as follows:

 Request name: bind_session

 Parameters:

 LS_session

Optional with WS transport. The Server internal string representing the session the
client wants to bind to.

Notes:

 It may be omitted with WS transport, if rebinding on the same stream connection
the session was previously bound to.

 It is always required with HTTP transport.

 LS_content_length

Optional. Content-Length to be used for the connection content. If too low or not
present, the Content-Length is assigned by Lightstreamer Server, based on its own
configuration.

 LS_polling

Optional. Requests a polling connection. If set to true, the Server will send only the
notifications that are ready at connection time and will exit immediately, keeping the
session active for subsequent rebind requests.

 LS_polling_millis

Only if LS_polling is true. Expected time between the closing of the connection and the
next polling connection. Required by the Server in order to ensure that the underlying
session is kept active across polling connections. If too high, the Server may apply a
configured maximum time. Anyway, the timeout used is notified to the client in the
response.

 LS_idle_millis

Only if LS_polling is true. Optional. Time the Server is allowed to wait for a
notification, if none is present at request time. If zero or not specified, the Server
response will be synchronous and might be empty. If positive, the Server response will
be asynchronous and, if the specified timeout expires, might be empty. If too high, the
Server may apply a configured maximum time.

 LS_keepalive_millis

Only if LS_polling is not true. Optional. Longest inactivity time allowed for the
connection. If such a long inactivity occurs, the Server sends a keepalive message (i.e. a

- 22 -

PROBE notification). If too low, the Server may apply a configured minimum time. If too
high, the Server will apply a configured maximum time. If not present, the keepalive time
is decided by the Server, based on its own configuration. Anyway, the keepalive time
used is notified to the client in the response.

 LS_send_sync

Only if LS_polling is not true. Optional. If set to false, instructs the Server not to send
the SYNC notifications on this connection. If omitted, the default is true.

Request example with HTTP transport:

POST /lightstreamer/bind_session.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 36
Content-Type: text/plain

LS_session=S73d162c183916f0dT2729905

Request example with WS transport:

create_session
LS_session=S73d162c183916f0dT2729905

See Session Creation and Binding Responses section in this chapter (just below) for sample
responses.

Session Creation and Binding Responses

Session creation and binding requests share the same responses.

Successful Session Creation or Binding Response

 Tag: CONOK (short of CONnection OK)

 Format: CONOK,<session-ID>,<request-limit>,<keep-alive>,<control-link>

 Arguments: 4

 <session-ID>

The Server internal string representing the session ID.

 <request-limit>

The maximum length allowed by the Server for a client request, expressed in bytes. It
is configured through the <request_limit> element in the Server configuration file. It is
necessary that the system has been configured in advance to prevent any single request
from exceeding this limit; however, this information can be useful when batching multiple
control requests.

 <keep-alive>

The longest inactivity time guaranteed throughout connection life time, expressed in
milliseconds. For a stream connection, when no notifications have been sent for this
time, a PROBE notification is sent to the client. On the other hand, for a polling connection,
if the response has not been supplied for this time, an empty response is issued. Not
receiving any message for longer than this time may be the signal of a problem.

- 23 -

 <control-link>

If a control link is specified in the Server configuration file, this is the address (IP
address, or hostname, and port) to which every following session rebind and control
request must be sent to. If no control link is specified in the Server configuration file, this
parameter has the special value asterisk “*” (UTF-8 code 0x2a). Its meaning is that the
client should send all the session rebind and control requests to the same address to
which it opened this stream connection.
Anyway, with WS transport, issuing requests directly on the stream connection is always
allowed.

Response example with HTTP transport:

HTTP/1.1 200 OK
Server: Lightstreamer-Server/7.0.0 build 1972
Content-Type: text/enriched; charset=iso-8859-1
Cache-Control: no-store
Cache-Control: no-transform
Cache-Control: no-cache
Pragma: no-cache
Expires: Thu, 1 Jan 1970 00:00:00 GMT
Date: Fri, 1 Jul 2016 14:01:19 GMT
Transfer-Encoding: chunked

2E
CONOK,S73d162c183916f0dT2729905,50000,5000,*

Response example with WS transport:

CONOK,S73d162c183916f0dT2729905,50000,5000,*

 Notifications: After this response, whatever content follows is a real-time update or any other
kind of notification. With WS transport, they can be interspersed with responses to control
requests sent on the stream connection. After a CONOK is sent, a SERVNAME, CLIENTIP (if available),
and CONS notifications are also immediately sent.

Other Session Creation or Binding Responses

 Tag: CONERR (short of CONnection ERRor)

 Format: CONERR,<error-code>,<error-message>

 Used when: with both session creation and binding, when the session could not be created or
bound.

 Arguments: 2

 <error-code>

Error code sent by the Server kernel or by the Metadata Adapter. For a list of supported
error codes see Appendix A.

 <error-message>

Error message sent by Server kernel or by the Metadata Adapter.

Error response example:

CONERR,2,Requested Adapter Set not available

- 24 -

 Tag: END (short of session END)

 Format: END,<cause-code>,<cause-message>

 Used when: only with session rebinding, when the requested session has just been forcibly
closed on the Server side.

 Arguments: 1

 <cause-code>

Cause code sent by the Server kernel. For a list of supported cause codes see
Appendix A.

 <cause-message>

Short cause description sent by the Server kernel.

End response example:

END,8,Session count limit reached

Control Requests

Control requests provide means to change the set of items and fields sent with real-time updates,
send messages and change parameters of an active subscription or session.

Common Parameters
All control requests (but for message send requests, that will be covered separately) share a common
name and some mandatory parameters. In particular one of them, LS_op, indicates the specific control
operation being requested.

 Request name: control

 Common Parameters:

 LS_session

Optional with WS transport. The session ID received from the Server at the beginning
of the stream connection.

Notes:

 When omitted with WS transport, its default value is the ID of the last session that
was bound to the WS connection (it may be currently still bound or temporarily
unbound due to a polling cycle). In order for this default value to be applied, the
session creation or binding request must have already responded with a CONOK
tag.

 With HTTP transport, it may be specified on the query string, instead of the
request body, to address the same session with a multiple request.

 LS_reqId

ID of the request. It may be any combination of letters and numbers, but typically a
progressive number will do, and must be unique within the connection.

 LS_op

- 25 -

Op-code of the specific control operation requested. See each request for its specific
op-code.

Subscription Request

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

 LS_op=add

Specifies that a new subscription must be added to the session.

 LS_subId

ID of the subscription. It must be a progressive integer number starting with 1, and
must be unique within the session.

 LS_data_adapter

Optional. Logical name of the Data Adapter available in the Adapter Set that will
provide data for this subscription. This Data Adapter must supply all the requested items.
If omitted, a Data Adapter named “DEFAULT” within the Adapter Set is assumed..

 LS_group

Identification name of the item group being subscribed. This name is interpreted by the
Metadata Adapter.

 LS_schema

Identification name of the field schema for which the subscription should provide real-
time updates. This name is interpreted by the Metadata Adapter.

 LS_selector

Optional. Identification name of a selector related to the items in the subscription. This
name is interpreted by the Metadata Adapter.

 LS_mode

Subscription mode of all the items in subscription.

Notes:

 Possible values are: RAW, MERGE, DISTINCT and COMMAND

 See the General Concepts document for details about subscription modes.

 LS_requested_buffer_size

Optional. Dimension of the buffers related to the items in the subscription, expressed
in number of update events. The Server may limit the buffer size, however. See the
General Concepts document for more details.

Notes:

 If set to unlimited, no limit is requested to the Server.

 Default value: 1 if LS_mode is MERGE and unlimited if LS_mode is DISTINCT.

 Considered only if LS_mode is MERGE or DISTINCT and LS_requested_max_frequency is
not set to unfiltered.

 LS_requested_max_frequency

Optional. Maximum update frequency for the items in the subscription, expressed in
updates/sec. The Server may limit the frequency, however. See the General Concepts
document for more details.

- 26 -

Notes:

 If set to unlimited, the Server forwards each update as soon as possible, with no
frequency limit

 If set to unfiltered, the Server forwards each update as soon as possible, with no
frequency limit, but also without losses. More precisely, any loss will be signaled
through an overflow (OV) notification. Considered only if LS_mode is MERGE, DISTINCT
or COMMAND.

 If set to a decimal number (with a dot as decimal separator), the maximum
frequency is set to the corresponding number of updates/sec. Considered only if
LS_mode is MERGE, DISTINCT or COMMAND (with COMMAND the maximum frequency
applies to the UPDATE commands sent for each key).

 Default value: unlimited.

 LS_snapshot

Optional. Requested snapshot length for the items in the subscription, expressed in
number of events or as a boolean.

Notes:

 If set to true, the Server sends the snapshot (possibly empty) for the items
contained in the subscription. Considered only if LS_mode is MERGE, DISTINCT or
COMMAND. In the DISTINCT case, the length of the snapshot is decided by the Server.

 If set to false, the Server does not send the snapshot for the items contained in
the subscription.

 If set to an integer number, the length of the snapshot is set to the corresponding
number of updates. Admitted only if LS_mode is DISTINCT. The Server sends the
snapshot for the items contained in the subscription, limiting the length to the
requested value. The number of updates received may be lower if the Server
imposes a stricter limit or fewer updates are available.

 Default value: false.

 Notifications: If successful, a SUBOK or SUBCMD notification is sent on the stream connection,
followed by a CONF notification. After that, real-time updates of the subscribed items start to be
delivered, beginning with the snapshot part, if requested. See Chapter 4: Successful
Subscription and Successful Subscription with Command Mode for more information.

Request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 147
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=1&LS_op=add&LS_subId=1&LS_group=item1&LS_
schema=last_price&LS_data_adapter=QUOTE_ADAPTER&LS_mode=MERGE

Request example with WS transport:

control
LS_reqId=1&LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUO
TE_ADAPTER&LS_mode=MERGE

Multiple request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0&LS_session=Sd9fce58fb5dbbebfT2255126 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*

- 27 -

Content-Length: 223
Content-Type: text/plain

LS_reqId=1LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUOT
E_ADAPTER&LS_mode=MERGE
LS_reqId=2LS_op=add&LS_subId=2&LS_group=item2&LS_schema=last_price&LS_data_adapter=QUOT
E_ADAPTER&LS_mode=MERGE

Multiple request example with WS transport:

control
LS_reqId=1&LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUO
TE_ADAPTER&LS_mode=MERGE
LS_reqId=2&LS_op=add&LS_subId=2&LS_group=item2&LS_schema=last_price&LS_data_adapter=QUO
TE_ADAPTER&LS_mode=MERGE

See Control Responses section in this chapter for sample responses.

Unsubscription Request

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

 LS_op=delete

Specifies that an existing subscription must be deleted from the session.

 LS_subId

ID of the existing subscription. It must be the same progressive integer number used
during subscription.

 Notifications: If successful, an UNSUB notification is sent on the stream connection, after the
last real-time update of subscribed items has been delivered. See Chapter 4: Successful
Unsubscription for more information.

Request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 71
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=2&LS_op=delete&LS_subId=1

Request example with WS transport:

control
LS_reqId=2&LS_op=delete&LS_subId=1

See Control Responses section in this chapter for sample responses.

Subscription Reconfiguration Request

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

- 28 -

 LS_op=reconf

Specifies that an existing subscription must be reconfigured.

 LS_subId

ID of the existing subscription. It must be the same progressive integer number used
during subscription.

 LS_requested_max_frequency

Optional. New maximum update frequency for the items in the subscription,
expressed in updates/sec. See the General Concepts document for more details. If not
supplied, no modification is requested.

Notes:

 May be a decimal number (with dot as a decimal separator).

 If the value is the string unlimited, the request is to relieve any existing frequency
limit.

 Admitted only if the subscription is not subscribed to with unfiltered max
frequency.

 Considered only if the subscription mode of the subscription is MERGE, DISTINCT or
COMMAND (in COMMAND mode the maximum frequency applies to the UPDATE
commands sent for each key).

 Note: this control request is designed to change different subscription configuration
parameters, in the future. As of TLCP-2.0.0, the only changeable parameter is the
subscription maximum frequency.

 Notifications: If successful, a CONF notification is sent on the stream connection, before real-
time updates of the subscribed items starts to be delivered with the new frequency. See
Chapter 4: Subscription Reconfiguration for more information.

Request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 102
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=3&LS_op=reconf&LS_subId=1&LS_requested_ma
x_frequency=2.0

Request example with WS transport:

control
LS_reqId=3&LS_op=reconf&LS_subId=1&LS_max_frequency=2.0

See Control Responses section in this chapter for sample responses.

Session Constrain Request

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

 LS_op=constrain

Specifies that an existing session must change its constraints.

- 29 -

 LS_requested_max_bandwidth

Optional. New maximum bandwidth requested by the client, expressed in kbps. See
the General Concepts document for more details. If not supplied, no modification is
requested.

Notes:

 May be a decimal number, with a dot as a decimal separator.

 If the value is the string unlimited, the request is to relieve any existing bandwidth
limit.

 Note: this control request is designed to change different session constraints, in the
future. As of TLCP-2.0.0, the only changeable constraint is the session maximum
bandwidth.

 Notifications: If successful, a CONS notification is sent on the stream connection, before real-
time updates starts to be delivered with the new bandwidth. See Chapter 4: Session Constraints
Changed for more information.

Request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 95
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=4&LS_op=constrain&LS_requested_max_bandwi
dth=50.0

Request example with WS transport:

control
LS_reqId=4&LS_op=constrain&LS_requested_max_bandwidth=50.0

See Control Responses section in this chapter for sample responses.

Force Session Rebind Request

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

 LS_op=force_rebind

Specifies that an existing session must be forced to rebind.

 LS_polling_millis

Optional. Expected time between the closing of the connection and the next binding
request, expressed in milliseconds.

 LS_close_socket

Optional. If true the corresponding stream connection is forcibly closed by the Server. If
omitted, the stream connection may be left open and the client may reuse it with both
HTTP (by application-wide or system-wide connection pooling) and WS.

 Notifications: If successful, a LOOP notification is sent on the stream connection. After that, real-
time updates stop being delivered and the session is unbound from the connection. See
Chapter 4: Stream Connection Loop for more information.

- 30 -

Request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 66
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=5&LS_op=force_rebind

Request example with WS transport:

control
LS_reqId=5&LS_op=force_rebind

See Control Responses section in this chapter for sample responses.

Session Destroy Request

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

 LS_op=destroy

Specifies that an existing session must be terminated.

 LS_cause_code

Optional. A numeric code to be reported in the consequent END message that will be
received on the stream connection in place of the default code 31. Useful if the request is
issued by some server-side process.

Notes:

 Only 0 or a negative code are supported; a positive code will be collapsed to 0.

 LS_cause_message

Optional. Considered only if LS_cause_code is also supplied. A text to be reported in the
consequent END message that will be received on the stream connection. Useful if the
request is issued by some server-side process.

Notes:

 If LS_cause_code is not present, the cause in the END message will be provided by
the Server, regardless of this setting.

 On the other hand, if LS_cause_code is present and LS_cause_message is not
specified, then the reported message will be “null”.

 The supplied message should be in simple ASCII, otherwise it might be altered in
order to be sent to the client; multiline text is also not allowed.

 The supplied message should be short. If longer than 35 characters and if a
content-length limit on the connection content is in force, it may be replaced with
"[Custom message skipped]".

 LS_close_socket

Optional. If true the corresponding stream connection is forcibly closed by the Server. If
omitted, the stream connection is left open and the client may reuse it with both HTTP
(by application-wide or system-wide connection pooling) and WS.

- 31 -

 Notifications: If successful, an END notification is sent on the stream connection. After that, real-
time updates stop being delivered and the session is terminated. See Chapter 4: Stream
Connection End for more information.

Request example with HTTP transport:

POST /lightstreamer/control.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 61
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=6&LS_op=destroy

Request example with WS transport:

control
LS_reqId=6&LS_op=destroy

See Control Responses section in this chapter for sample responses.

Message Send Request

Sending a message is still a control request, but makes use of a different name and hence does not
require the LS_op parameter.

 Request name: msg

 Parameters:

 LS_session, LS_reqId

See the Common Parameters section of this chapter.

 LS_message

Any text string. This string should be interpreted and verified by the Metadata Adapter,
so the developer is free to decide its meaning.

 LS_sequence

Optional. An alphanumeric identifier (the underscore character is also allowed), used to
identify a subset of messages to be managed in sequence, based on the assigned
progressive numbers.

Notes:

 All messages associated with the same sequence name that have successfully
been sent to the Server are guaranteed to be processed sequentially, according
to the associated progressive numbers.

 In case a message is received and the messages for all the previous numbers
expected haven't been received yet, the latter numbers can be skipped according
to the timeout specified with the message.

 If omitted, the message is processed immediately, possibly concurrently with
others, regardless of any progressive number assigned. Yet, if a progressive
number is specified, previous numbers for which no unsequenced message has
been received after a server-side timeout may be notified by the Server as
skipped.

 The special identifier “UNORDERED_MESSAGES”, used in previous text protocols, is now
reserved and can’t be used. If specified leads to an error.

- 32 -

 LS_msg_prog

Optional. The progressive number of the message within the specified sequence,
starting from 1. It is also used to identify the message in the MSGDONE and MSGFAIL
notifications, even if no sequence is specified.
Notes:

 It is mandatory whenever LS_sequence is specified or LS_outcome is set to true.

 Even if LS_sequence is omitted and LS_outcome is set to false, it can be specified
to enforce checks for duplicates and missing messages (see LS_sequence).

 LS_max_wait

Optional. The maximum time the Server can wait before processing the message if
one or more of the preceding messages for the same sequence have not been received,
expressed in milliseconds.

Notes:

 If too high or not specified, the timeout is assigned by the Server, based on its own
configuration.

 If LS_sequence is omitted, the setting is ignored.

 LS_ack

Optional. Only if the stream connection is on WS transport. If false the REQOK
response is not sent.

Notes:

 Skipping the REQOK response may be useful when sending frequent loads of
messages with no requirements for processing. E.g. when sending the status of a
frequently updated object.

 Ignored if used with HTTP transport, as an HTTP response is always sent.

 Default value is true.

 LS_outcome

Optional. If false the MSGDONE or MSGFAIL notification is not sent.

Notes:

 As with the LS_ack argument, skipping the MSGDONE or MSGFAIL notification may be
useful when sending frequent loads of messages with no requirements for
processing. E.g. when sending the status of a frequently updated object.

 Default value is true.

 Notifications: If LS_outcome is omitted or set to true, a MSGDONE or a MSGFAIL notification is sent
on the stream connection, depending if the message is successfully or unsuccessfully
delivered, respectively. See Chapter 4: Message Successfully Sent and Message Send Failed
for more information.

Request example with HTTP transport:

POST /lightstreamer/msg.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 95
Content-Type: text/plain

LS_session=Sd9fce58fb5dbbebfT2255126&LS_reqId=6&LS_sequence=CHAT&LS_msg_prog=1&LS_messa
ge=Hello

Request example with WS transport:

- 33 -

msg
LS_reqId=6&LS_sequence=CHAT&LS_msg_prog=1&LS_message=Hello

See Control Responses section in this chapter (just below) for sample responses.

Control Responses

All control requests, including message send requests, share the same responses.

Successful Control Response

 Tag: REQOK (short of REQuest OK)

 Format: REQOK,<request-ID>

 Arguments: 1

 <request-ID>

The ID of the request.

Response example:

REQOK,1

Other Control Responses

 Tag: REQERR (short of REQuest ERRor)

 Format: REQERR,<request-ID>,<error-code>,<error-message>

 Used when: an error occurred and the request could not be completed.

 Arguments: 3

 <request-ID>

The ID of the request.

 <error-code>

Error code sent by the Server kernel or by the Metadata Adapter. For a list of supported
error codes see Appendix B.

 <error-message>

Error message sent by Server kernel or by the Metadata Adapter.

Error response example:

REQERR,19,Specified subscription not found

 Tag: ERROR

- 34 -

 Format: ERROR,<error-code>,<error-message>

 Used when: the request could not be interpreted or processed.

 Arguments: 2

 <error-code>

Error code sent by the Server kernel. For a list of supported error codes see Appendix
B.

 <error-message>

Error message sent by Server kernel.

End response example:

ERROR,68,Internal error during request processing

- 35 -

4 Notification Reference

This chapter reports the complete syntax reference for all TLCP notifications. The general syntax is
discussed in Chapter 1: Common Response and Notification Syntax, together with a sample algorithm
for response parsing. It is reported here for your convenience:

 Notifications general syntax (with HTTP Transport the response is in the body of the HTTP
response):

<tag>,<argument1>,...,<argumentN>

Line separator is CR-LF. Encoding is UTF-8.

Real-Time Update

 Tag: U (short of Update)

 Format: U,<subscription-ID>,<item>,<field-1-value>|<field-2-value>|...|<field-N-value>

 Format: U,<subscription-ID>,<item>,<field-1-value>|^<number-of-unchanged-fields>|...|<field-N-value>

 Used when: to send a real-time update on the content of the fields of an item. The notification
is also used to send the item’s snapshot.

 Arguments: 3

 <subscription-ID>

The ID of the subscription.

 <item>

Index of the item being updated. The index is 1-based, and the order of items in the
subscription is determined by the Metadata Adapter.

 <field-1-value>|...|<field-N-value>

Pipe-separated list of field values. See below. The order of fields in the subscription is
determined by the Metadata Adapter.

Decoding the Pipe-Separated List of Values
The third argument of a real-time update contains the field values for the specified item. The second-
level syntax of this argument is designed to be as compact as possible.

The following encoding rules apply:

 Each value is an UTF-8 string.

 An empty value means the field is unchanged compared to the previous update of the
same field.

 A value corresponding to a hash sign “#” means the field is null.

 A value corresponding to a dollar sign “$” means the field is empty.

 A value corresponding to a caret followed by a number, such as “^3”, means the
following number of fields are unchanged.

- 36 -

 Meta characters, such as the pipe “|”, CR-LF, etc., are percent-encoded.

A simple decoding algorithm is the following:

 Set a pointer to the first field of the schema.

 Look for the next pipe “|” from left to right and take the substring to it, or to the end of the line if
no pipe is there.

 Evaluate the substring:

 If its value is empty, the pointed field should be left unchanged and the pointer moved to
the next field.

 Note: this case never happens on the first update of a subscription.

 Otherwise, if its value corresponds to a single hash sign “#” (UTF-8 code 0x23), the
pointed field should be set to a null value and the pointer moved to the next field.

 Otherwise, If its value corresponds to a single dollar sign “$” (UTF-8 code 0x24), the
pointed field should be set to an empty value (“”) and the pointer moved to the next
field.

 Otherwise, if its value begins with a caret “^” (UTF-8 code 0x5E):

 take the substring following the caret and convert it to an integer number;

 for the corresponding count, leave the fields unchanged and move the pointer
forward;

 e.g. if the value is “^3”, leave unchanged the pointed field and the following two
fields, and move the pointer 3 fields forward.

 Note: this case never happens on the first update of a subscription.

 Otherwise, the value is an actual content: decode any percent-encoding and set the
pointed field to the decoded value, then move the pointer to the next field.

 Note: “#”, “$” and “^” characters are percent-encoded if occurring at the beginning
of an actual content (and only in this case).

 Return to the second step, unless there are no more fields in the schema.

Notification Examples
As an example, suppose a subscription to a typical stock quote adapter, with subscription ID 3, just
one item, and the following fields in the schema: timestamp, price, change, minimum, maximum, bid, ask,
open, close and status.

This is a hypothetical stream of real-time updates and the effect it has on field values on the client:

U,3,1,20:00:33|3.04|0.0|2.41|3.67|3.03|3.04|#|#|$

timestamp price change minimum maximum bid ask open close status

20:00:33 3.04 0.0 2.41 3.67 3.03 3.04 <null> <null> <empty>

Changed Changed Changed Changed Changed Changed Changed Changed Changed Changed

The initial update (the snapshot) carries information for all the fields. It contains two null fields (open
and close) and an empty field (status).

- 37 -

U,3,1,20:00:54|3.07|0.98|||3.06|3.07|||Suspended

timestamp price change minimum maximum bid ask open close status

20:00:54 3.07 0.98 2.41 3.67 3.06 3.07 <null> <null> Suspended

Changed Changed Changed Unchanged Unchanged Changed Changed Unchanged Unchanged Changed

This update contains 4 unchanged fields: minimum, maximum, open and close.

U,3,1,20:04:16|3.02|-0.65|||3.01|3.02|||$

timestamp price change minimum maximum bid ask open close status

20:04:16 3.02 -0.65 2.41 3.67 3.01 3.02 <null> <null> <empty>

Changed Changed Changed Unchanged Unchanged Changed Changed Unchanged Unchanged Changed

This update contains again 4 unchanged fields: minimum, maximum, open and close. Moreover, it sets he
status field to its initial empty value.

U,3,1,20:04:40|^4|3.02|3.03|||

timestamp price change minimum maximum bid ask open close status

20:04:40 3.02 -0.65 2.41 3.67 3.02 3.03 <null> <null> <empty>

Changed Unchanged Unchanged Unchanged Unchanged Changed Changed Unchanged Unchanged Unchanged

This update includes the special syntax for multiple contiguous unchanged fields: price, change,
minimum and maximum. The open, close and status fields are also unchanged.

U,3,1,20:06:10|3.05|0.32|^7

timestamp price change minimum maximum bid ask open close status

20:06:10 3.03 -0.32 2.41 3.67 3.02 3.03 <null> <null> <empty>

Changed Changed Changed Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

This update includes again the special syntax for multiple contiguous unchanged fields: minimum,
maximum, bid, ask, open, close and status.

U,3,1,20:06:49|3.08|1.31|||3.08|3.09|||

timestamp price change minimum maximum bid ask open close status

20:06:49 3.08 1.31 2.41 3.67 3.08 3.09 <null> <null> <empty>

Changed Changed Changed Unchanged Unchanged Changed Changed Unchanged Unchanged Unchanged

The final update contains once more 4 unchanged fields: minimum, maximum, open and close.

Other Subscription-Related Notifications

The following notifications provide insights on the status of a specific subscription.

- 38 -

Successful Subscription

 Tag: SUBOK (short of SUBscription OK)

 Format: SUBOK,<subscription-ID>,<num-items>,<num-fields>

 Used when: to notify of a successful subscription (but for those that make use of COMMAND
mode).

 Arguments: 3

 <subscription-ID>

The ID of the subscription.

 <num-items>

Number of items in the subscription. The number and the order of items in the
subscription is determined by the Metadata Adapter.

 <num-fields>

Number of fields in the subscription. The number and the of order of fields in the
subscription is determined by the Metadata Adapter.

This notification is sent after a subscription request has been received and the corresponding
subscription has been activated on the Server. After this notification, real-time updates related to the
subscription items and fields start to be sent.

Notification Example:

SUBOK,3,1,10

Successful Subscription with Command Mode

 Tag: SUBCMD (short of SUBscription in CoMmanD mode)

 Format: SUBCMD,<subscription-ID>,<num-items>,<num-fields>,<key-field>,<command-field>

 Used when: to notify of a successful subscription that makes use of COMMAND mode.

 Arguments: 5

 <subscription-ID>

The ID of the subscription.

 <num-items>

Number of items in the subscription. The number and the order of items in the
subscription is determined by the Metadata Adapter.

 <num-fields>

Number of fields in the subscription. The number and the of order of fields in the
subscription is determined by the Metadata Adapter.

 <key-field>

Index of the field that contains the key. The index is 1-based; the order of fields in the
subscription is determined by the Metadata Adapter.

 <command-field>

- 39 -

Index of the field that contains the command. The index is 1-based; the order of fields
in the subscription is determined by the Metadata Adapter.

This notification is sent after a subscription request has been received and the corresponding
subscription has been activated on the Server. After this notification, real-time updates related to the
subscription items and fields start to be sent.

Notification Example:

SUBCMD,3,1,10,1,2

Successful Unsubscription

 Tag: UNSUB (short of UNSUBscription)

 Format: UNSUB,<subscription-ID>

 Used when: to notify of a successful unsubscription.

 Arguments: 1

 <subscription-ID>

The ID of the subscription.

This notification is sent after an unsubscription request has been received and the corresponding
subscription has been deactivated on the Server. After this notification, no more real-time updates
related to the subscription items and fields will be sent.

Notification Example:

UNSUB,3

End of Snapshot

 Tag: EOS (short of End Of Snapshot)

 Format: EOS,<subscription-ID>,<item>

 Used when: to notify the end of the snapshot of an item.

 Arguments: 2

 <subscription-ID>

The ID of the subscription.

 <item>

Index of the item whose snapshot has ended. The index is 1-based, and the order of
items in the subscription is determined by the Metadata Adapter.

This notification is sent immediately after the last U notification bringing the snapshot has been sent.
The snapshot represents the “initial state” of an item, and may be composed of multiple U notifications
in case the subscription is in DISTINCT or COMMAND mode. With MERGE mode the snapshot is composed of
just one U notification and hence this notification is not sent. With RAW mode the snapshot is not
supported.

- 40 -

For an in-depth discussion about the snapshot and subscription modes see the General Concepts
document.

Notification Example:

EOS,3,1

Snapshot Clearing

 Tag: CS (short of Clear Snapshot)

 Format: CS,<subscription-ID>,<item>

 Used when: to notify that the snapshot of an item has been cleared.

 Arguments: 2

 <subscription-ID>

The ID of the subscription.

 <item>

Index of the item whose snapshot has been cleared. The index is 1-based, and the
order of items in the subscription is determined by the Metadata Adapter.

This notification is sent when the Data Adapter explicitly asks the Server to clear the snapshot of a
subscription. If the subscription is in MERGE mode, no notification is sent, as the clearing is handled by
the Server by sending an update with null fields. On the other hand, if the subscription is in DISTINCT or
COMMAND mode, the notification is sent to the client so that it can clear its representation of the item
(typically a list or a history, with these modes).

Notification Example:

CS,3,1

Overflow

 Tag: OV (short of OVerflow)

 Format: OV,<subscription-ID>,<item>,<overflow-size>

 Used when: to notify that one or more update events for an item have been dropped due to
buffer limitations on the Server.

 Arguments: 3

 <subscription-ID>

The ID of the subscription.

 <item>

Index of the item whose update events have been cleared. The index is 1-based, and
the order of items in the subscription is determined by the Metadata Adapter.

 <overflow-size>

- 41 -

The number of real-time update events that have been dropped.

This notification can only be sent if the item was subscribed in RAW or COMMAND mode (for ADD and DELETE
events only), or if it was subscribed in MERGE, DISTINCT, or COMMAND mode (the modes for which events
dropping is allowed) and unfiltered dispatching was requested. So, in all these cases, whenever the
Server has to drop an event because of resource limits, it notifies the client in this way.

Notification Example:

OV,3,1,5

Subscription Reconfiguration

 Tag: CONF (short of subscription reCONFiguration)

 Format: CONF,<subscription-ID>,<max-frequency>,<filtered|unfiltered>

 Used when: to notify that a subscription has been successfully configured, or reconfigured with
a different (or even the same) max frequency.

 Arguments: 3

 <subscription-ID>

The ID of the subscription.

 <max-frequency>

New maximum frequency of the subscription, expressed in updates/sec as a decimal
number. The value unlimited is also possible, meaning that no limit is applied on the
frequency.

Notes:

 This value reports the maximum frequency for all the items in the subscription,
considering that different items may have different maximum frequencies (as the
Metadata Adapter can limit the frequency on an item by item basis).

 The computed maximum frequency may be an approximation of the requested
maximum frequency, due to the Server internal handling of update scheduling.

 <filtered|unfiltered>

Filtered/unfiltered flag for the subscription.

This notification is sent at the start of a subscription and after a subscription has been reconfigured
following a Subscription Reconfiguration Request (see Chapter 3: Subscription Reconfiguration
Request). After this notification, real-time updates are sent with the specified maximum frequency.

Notification Example:

CONF,3,3.0,filtered

Message-Related Notifications

The following notifications provide insights on the status of a specific upstream message.

- 42 -

Message Successfully Sent

 Tag: MSGDONE (short of MeSsaGe send DONE)

 Format: MSGDONE,<sequence>,<prog>

 Used when: to notify that a message has been successfully sent and processed.

 Arguments: 2

 <sequence>

Sequence identifier specified in the send request.

 <prog>

Message progressive number specified in the send request.

This notification is sent after the corresponding message has been successfully processed. A
message is considered processed when the Metadata Adapter has received it in its notifyUserMessage
event and returned with no exceptions. See the Metadata Adapter SDK API Reference for more
information.

Notification Example:

MSGDONE,Orders_Sequence,3

Message Send Failed

 Tag: MSGFAIL (short of MeSsaGe send FAILed)

 Format: MSGFAIL,<sequence>,<prog>,<error-code>,<error-message>

 Used when: to notify that a message has not been sent or its processing failed.

 Arguments: 4

 <sequence>

Sequence identifier specified in the send request, or “*”, if a sequence had not been
specified.

 <prog>

Message progressive number specified in the send request.

 <error-code>

Error code sent by the Server kernel or by the Metadata Adapter. For a list of supported
error codes see Appendix B.

 <error-message>

Error message sent by Server kernel or by the Metadata Adapter.

This notification is sent when the corresponding message has not been received by the Server or its
processing failed for some reason.

Notification Example:

MSGFAIL,Orders_Sequence,4,38,The specified progressive number has been skipped by timeout

- 43 -

Session-Related Notifications

The following notifications provide insights on the status of the current session.

Session Constraints Changed

 Tag: CONS (short of CONStrain)

 Format: CONS,<bandwidth>

 Used when: to notify that a session has been successfully configured, or reconfigured with a
different (or even the same) maximum bandwidth.

 Arguments: 1

 <bandwidth>

New maximum bandwidth of the session, expressed in kbps as a decimal number. The
value unlimited is also possible, meaning that no limit is applied on the bandwidth. The
value unmanaged is possible as well; it is equivalent to unlimited, but it also notifies that
the client is not allowed to limit the bandwidth for this session.

This notification is sent at the beginning of the session and after the session constraints, in particular
its maximum bandwidth, has been changed following a Session Constrain Request (see Chapter 3:
Session Constrain Request). The bandwidth may be changed also by server-side actions. After this
notification, real-time updates are sent within the specified maximum bandwidth limit.

Notification Example:

CONS,50

Time Synchronization

 Tag: SYNC (short of SYNChronism)

 Format: SYNC,<seconds-since-initial-header>

 Used when: to notify the time elapsed on the Server since the session was bound.

 Arguments: 1

 <seconds-since-initial-header>

Time elapsed on the Server since the session was bound, expressed in seconds.

This notification is sent periodically to notify the client of the time elapsed on the Server. Official
Lightstreamer client libraries exploit this notification to detect when they are not keeping up with the
current flow of real-time updates. The notifications are not sent on polling connections.

Notification Example:

SYNC,120

- 44 -

Client IP Address

 Tag: CLIENTIP (short of CLIENT IP address)

 Format: CLIENTIP,<client-IP>

 Used when: to notify the IP address of the client, as seen by the Server.

 Arguments: 1

 <client-IP>

IP address of the client, as seen by the Server.

This notification is sent to notify the client of its own IP address, as it appears on the Server. Official
Lightstreamer client libraries exploit this notification to detect when the client has changed its network
(e.g. it passed from a 3G WAN to a local Wi-Fi), so that it can try again to reconnect with a transport
that previously failed. Note that this notification may be disabled with the Server configuration element
<client_identification>.

Notification Example with IPv4 address:

CLIENTIP,127.0.0.1

Notification Example with IPv6 address:

CLIENTIP,::1

Server Name

 Tag: SERVNAME (short of SERVer NAME)

 Format: SERVNAME,<server-name>

 Used when: to notify the Server configured name.

 Arguments: 1

 <server-name>

The configured name of the Server.

This notification is sent to let the client know the configured name of the Server (i.e. the “name”
attribute specified for the listening port in Lightstreamer Server configuration). Official Lightstreamer
client libraries provide this information to the application, for example to improve diagnostics.

Notification Example:

SERVNAME,Lightstreamer HTTP Server

No Operation

 Tag: NOOP (short of NO OPeration)

 Format: NOOP,<preamble>

- 45 -

 Used when: to send dummy content to the client.

 Arguments: 1

 <preamble>

Dummy content to be ignored.

The purpose of this notification is to fill the receive buffer of the client browser or the operating system
during the initial setup phase of the session. While this may seem weird, consider that certain
operating systems buffer the content of an HTTP response until some specific length (e.g. 2 Kbytes).
Preemptively filling this buffer lets the client receive subsequent content as soon as it is sent by the
Server.

Notification Example:

NOOP,sending placeholder data

Probe (Keep-Alive)

 Tag: PROBE

 Format: PROBE

 Used when: to keep the stream connection alive.

 Arguments: 0

This notification is sent periodically by the Server when no other activity has been sent on the stream
connection. The interval is specified in the Server configuration, but it may be changed during session
creation; the actual interval is reported in the session creation response. The notifications are not sent
on polling connections.

Official Lightstreamer client libraries monitor this notification to detect when the connection is stalled: if
after the expected interval plus a configurable timeout no PROBE has been received, the connection is
closed and reopened.

Notification Example:

PROBE

Stream Connection Loop

 Tag: LOOP

 Format: LOOP,<expected-delay>

 Used when: to signal that the session needs to be rebound.

 Arguments: 1

 <expected-delay>

Expected delay before rebinding, expressed in milliseconds.

Notes:

- 46 -

 A value of 0 means that the client should rebind the session as soon as possible.

 A value greater than 0 is actually used only on polling sessions requested with
LS_polling_millis > 0, i.e. synchronous polling. In this situation, the expected-
delay may be lower than originally requested with LS_polling_millis.

Reasons for a session to be rebound are mainly the following:

 The polling cycle is complete.

 The Content-Length of an HTTP stream connection has been reached.

 A rebind has been explicitly asked by the client.

In all these situations the session is unbound and a LOOP notification is sent. The client is expected to
react by rebinding the session (see Chapter 3: Session Binding Request).

Note: since this notification marks the end of the stream connection, with HTTP transport, any
spurious character following the CR-LF of this notification may be safely ignored.

Notification Example:

LOOP,5000

Stream Connection End

 Tag: END

 Format: END,<cause-code>,<cause-message>

 Used when: to signal that the session has been closed by the Server.

 Arguments: 1

 <cause-code>

Cause code sent by the Server kernel. For a list of supported cause codes see
Appendix A.

 <cause-message>

Short cause description sent by the Server kernel.

This notification is sent when the Server closes the session for some reason, e.g. on request by an
administrator or as a consequence of a Session Destroy request.

Note: since this notification marks the end of the stream connection, with HTTP transport, any
spurious character following the CR-LF of this notification may be safely ignored.

Notification Example:

END,8,Session count limit reached

- 47 -

5 Special Use Cases

This chapter details some special use cases of TLCP that fall outside of the rules described so far.

Session Creation and Control Combo Request

Under particular circumstances, you may want to create and control a session with a single request.
To accomplish this, simply create a request that includes the name for session creation and the
parameters of both the session creation and control requests. Nota that message send requests are
not supported by this syntax.

With HTTP transport, an example of session creation and subscription is the following:

POST /lightstreamer/create_session.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 166
Content-Type: text/plain

LS_user=&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUOT
E_ADAPTER&LS_mode=MERGE

With WS transport, the same example is the following:

create_session
LS_user=&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUOT
E_ADAPTER&LS_mode=MERGE

Note that:

 The LS_session parameter is omitted from the control request, as the request refers to the
session to be created.

 The LS_reqId parameter is also omitted. The control request, in fact, has no specific
response (see below), so specifying a request ID is useless.

 The control request does not count towards monitoring statistics.

The response of this combo request is only that of the session creation, but the whole operation is
considered atomic: if the control request fails, the session creation also fails.

Hence, if the combo request is successful, a sample response with HTTP transport would be:

HTTP/1.1 200 OK
Server: Lightstreamer-Server/7.0.0 build 1972
Content-Type: text/enriched; charset=iso-8859-1
Cache-Control: no-store
Cache-Control: no-transform
Cache-Control: no-cache
Pragma: no-cache
Expires: Thu, 1 Jan 1970 00:00:00 GMT
Date: Fri, 1 Jul 2016 14:01:19 GMT
Transfer-Encoding: chunked

2E
CONOK,S73d162c183916f0dT2729905,50000,5000,*

While with WS transport it would simply be:

- 48 -

CONOK,S73d162c183916f0dT2729905,50000,5000,*

On the other hand, if the combo request fails, either in the session creation or control part, a sample
response with HTTP transport could be:

HTTP/1.1 200 OK
Server: Lightstreamer-Server/7.0.0 build 1972
Content-Type: text/plain; charset=iso-8859-1
Cache-Control: no-store
Cache-Control: no-transform
Cache-Control: no-cache
Pragma: no-cache
Expires: Thu, 1 Jan 1970 00:00:00 GMT
Date: Fri, 1 Jul 2016 14:01:19 GMT
Content-Length: 130

CONERR,64,Unexpected error while initializing the session: Metadata Provider refusal:
Mode MERGE is not supported for item item1

While with WS transport it would simply be:

CONERR,64,Unexpected error while initializing the session: Metadata Provider refusal:
Mode MERGE is not supported for item item1

Session Creation and Multiple Control Combo Request
A variant of the previous special case is a session creation request combined with multiple control
requests.

With HTTP transport, an example of session creation and multiple subscription is the following:

POST /lightstreamer/create_session.txt?LS_protocol=TLCP-2.0.0 HTTP/1.1
Host: push.lightstreamer.com
Accept: */*
Content-Length: 376
Content-Type: text/plain

LS_user=&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg
LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&
LS_mode=MERGE
LS_op=add&LS_subId=1&LS_group=item2&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&
LS_mode=MERGE
LS_op=add&LS_subId=1&LS_group=item3&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&
LS_mode=MERGE

With WS transport, the same example is the following:

create_session
LS_user=&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg
LS_op=add&LS_subId=1&LS_group=item1&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&
LS_mode=MERGE
LS_op=add&LS_subId=1&LS_group=item2&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&
LS_mode=MERGE
LS_op=add&LS_subId=1&LS_group=item3&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&
LS_mode=MERGE

Note that:

 As in the previous special case, the LS_session and LS_reqId parameters are omitted.

 Control requests are separated on multiple lines, as in the case of batching. See
Chapter 1: Request Syntax for more information.

 These control requests do not count towards monitoring statistics.

- 49 -

In this special case also the session creation and multiple control requests are considered atomic: if
one the control requests fails, the session creation fails too. Hence, sample successful and failure
responses are equivalent to those of the previous special case.

Use of HTTP GET in Place of HTTP POST

While all documentation of TLCP so far specified to use the HTTP POST method, the Server also
accepts the HTTP GET method.

When using the GET method the following considerations apply:

 Parameters must be specified in the query string, since some HTTP client libraries may not
allow to send any request body with a GET method.

 The query string is limited in length (its limit can be set in the Server configuration file).

 With a session creation request, username and password are visible on the query string and
more prone to be logged by intermediate proxies.

 Since on the Server the HTTP GET method may actually change the Server state, it can not be
considered nullipotent, and hence it is not compliant with HTTP specification.

 Moreover, consider that an intermediate network appliance may wrongly assume it is
nullipotent and resend the same request in a subsequent moment.

While in some cases the HTTP GET method may solve practical problems (e.g. when diagnosing a
connection problem from the address bar of a browser), its use is strongly discouraged for the reasons
above.

An example of session creation with HTTP GET method is the following:

GET /lightstreamer/create_session.txt?LS_protocol=TLCP-
2.0.0&LS_user=&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg HTTP/1.1
Host: push.lightstreamer.com
Accept: */*

Combo requests, as introduced above, are also supported when single control requests are involved,
as in the following example:

GET /lightstreamer/create_session.txt?LS_protocol=TLCP-
2.0.0&LS_user=&LS_adapter_set=DEMO&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_op=add&LS_subId=1&LS_group=item2&LS_schema=last_price&LS_data_adapter=QUOTE_ADAPTER&LS
_mode=MERGE HTTP/1.1
Host: push.lightstreamer.com
Accept: */*

Response is the same as with HTTP POST method. See Chapter 3: Session Creation and Binding
Responses for more information.

- 50 -

6 Hands On

This chapter shows the TLCP protocol hands on by using the cURL utility as a mean to connect, send
requests and receive responses from a Lightstreamer Server. First two workflows are taken from
Chapter 2: Workflow Examples, where they are shown with their sequence diagram also. Sample
sessions are presented for HTTP transport only, as there is no widely accepted cURL equivalent for
WS transport.

About cURL

cURL is a widespread command-line utility used to test HTTP requests and responses. It is available
for most operating systems and can be downloaded at:

 https://curl.haxx.se

Its basic syntax is:

curl [options] <URL>

The options used in the following examples are:

 -X <method>

Specifies the HTTP method to be used in the request.

 -d '<data>'

Specifies the content of the request body.

 -N

Specifies to avoid buffering the response.

 -v

Specifies to be verbose.

A sample cURL command-line request is the following:

curl -X POST -d "LS_adapter_set=DEMO" http://push.lightstreamer.com/lightstreamer/create_session.txt

Server Setup

Any just-downloaded installation of Lightstreamer Server can run the following sample sessions. Once
started (see the GETTING_STARTED.TXT document in the installation directory), the Server:

 Responds to TCP port 8080 to both HTTP and WS connections.

 Provides an Adapter Set called “WELCOME” and a Data Adapter called “STOCKS” that
simulates a simple stock exchange.

 Item names are named “item1” to “item30” and provide stock quotes with different
simulated prices, names and update frequencies.

- 51 -

https://curl.haxx.se/

 Field names are the following: “stock_name”, “time”, “last_price”, “pct_change”, “min”,
“max”, “ask”, “bid”, “bid_quantity”, “ask_quantity”, “ref_price”, “open_price”.

 Requires no authentication.

Basic Subscription

The Basic Subscription example has the following workflow (see Chapter 2: Basic Subscription):

1. Connection and session creation.

2. Subscription to an item on a control connection.

3. Receive some data.

4. Unsubscription from an item on a control connection.

5. Disconnection.

Connection and Session Creation
First things first, let’s connect and create the session. Our request needs to specify:

 The protocol: LS_protocol=TLCP-2.0.0

 The client identifier: LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg

 The Adapter Set “WELCOME”: LS_adapter_set=WELCOME

 Finally, the host, port and name: http://localhost:8080/lightstreamer/create_session.txt

Here it is the complete call with cURL:

curl -v -N -X POST -d "LS_adapter_set=WELCOME&LS_cid=mgQkwtwdysogQz2BJ4Ji%20kOj2Bg"
http://localhost:8080/lightstreamer/create_session.txt?LS_protocol=TLCP-2.0.0

Note that it is a single line. See Chapter 3: Session Creation Request for more information.

The response from the Server looks like the following:

CONOK,S1d7c802482843a26T5626355,50000,5000,*
SERVNAME,Lightstreamer HTTP Server
CLIENTIP,0:0:0:0:0:0:0:1
NOOP,sending placeholder data
[…]
NOOP,sending placeholder data
CONS,unlimited
PROBE
PROBE
PROBE
[…]

The response contains:

 The CONOK response, with the session ID (underlined), request limit, keep alive time and control
link.

 The SERVNAME notification, with the name of the Server.

 The CLIENTIP notification, with the client IP.

- 52 -

 Some NOOP notifications (the majority are omitted), needed to fill up the receive buffer of the
client.

 The CONS notification, with the maximum bandwidth allowed (unlimited means no limit).

 Finally, repeating each 5 seconds, a PROBE notification to keep the stream connection alive.

Subscription to an Item
The previous call with cURL opened the stream connection and must be left intact to receive some
data. So, on a separate command line, let’s subscribe to an item using a request with the following
characteristics:

 The operation is a subscription: LS_op=add

 The subscription ID to identify the subscription later.

 The Data Adapter “STOCKS”: LS_data_adapter=STOCKS

 The group is simply the name of an item: LS_group=item1

 The schema is composed by juxtaposing some field names: LS_schema=stock_name time last_price

 Note that juxtaposing field names to form a schema name requires some logic on the
Metadata Adapter side. The official Adapter SDKs provide this logic in the
LiteralBasedProvider Metadata Adapter example.

 The session ID is the one reported on the session creation response.

 The request ID to be able to match the corresponding response.

 Finally, the name is that of a control request: control

Here it is the complete call with cURL:

curl -v -N -X POST -d
"LS_op=add&LS_subId=1&LS_data_adapter=STOCKS&LS_group=item1&LS_schema=stock_name%20time
%20last_price&LS_mode=MERGE&LS_session=<session-ID>&LS_reqID=1"
http://localhost:8080/lightstreamer/control.txt?LS_protocol=TLCP-2.0.0

Recall that it is a single line. Put the session ID of your session where appropriate (underlined). See
Chapter 3: Subscription Request for more information.

The response from the Server is:

REQOK,1

With 1 being the request ID. On the other command-line, where the stream connection is running,
some new notifications appear:

[…]
PROBE
SYNC,14
SUBOK,1,1,3
CONF,1,unlimited,filtered
PROBE
[…]

- 53 -

The meaning being:

 The SYNC notification reports the elapsed time on the server (in seconds).

 The SUBOK notification reports that the subscription with ID 1 has been successfully activated.

 That CONF notification reports that the subscription with ID 1 has no frequency limit and is
filtered.

See Chapter 4: Time Synchronization, Successful Subscription and Subscription Reconfiguration for
more information.

Receive Some Data
On the command-line where the stream connection is running, from time to time some real-time
update notifications appear:

[…]
PROBE
U,1,1,Anduct|11:02:33|3.11
PROBE
[…]

[…]
PROBE
SYNC,102
U,1,1,|11:03:39|
PROBE
[…]

[…]
PROBE
U,1,1,|11:04:29|3.09
PROBE
[…]

The subscribed item changes its values with an average period of 30 seconds. When it changes, the
Server sends a real-time update notification with the new data (only those that were specified in the
schema).

So the first real-time update:

 U,1,1,Anduct|11:02:33|3.11

Specifies that the first item of subscription with ID 1 has now the following values:

 “Anduct” as stock_name

 “11:02:33” as time

 3.11 as last_price

Following real-time updates provide changes to some of these fields, leaving unspecified all the fields
that are unchanged. See Chapter 4: Decoding the Pipe-Separated List of Values for more information.

Unsubscription from an Item
On a separate command line, let’s unsubscribe using a request with the following characteristics:

- 54 -

 The operation is an unsubscription: LS_op=delete

 The subscription ID is the one used during subscription: LS_subId=1

 The session ID is the one reported on the session creation response.

 The request ID to be able to match the corresponding response.

Here it is the complete call with cURL:

curl -v -N -X POST -d "LS_op=delete&LS_subId=1&LS_session=<session-ID>&LS_reqID=2"
http://localhost:8080/lightstreamer/control.txt?LS_protocol=TLCP-2.0.0

Recall that it is a single line. Put the session ID of your session where appropriate (underlined). See
Chapter 3: Unsubscription Request for more information.

The response from the Server is:

REQOK,2

With 2 being the request ID. On the other command-line, where the stream connection is running, a
new notifications appears:

UNSUB,1

The meaning of UNSUB notification is that the subscription with ID 1 has been successfully deactivated.
See Chapter 4: Successful Unsubscription for more information.

Disconnection
Disconnecting from a stream connection is done by simply closing the underlying socket. The Server
automatically detects the connection termination and destroys the session, freeing up its resources. In
case of the stream connection with cURL, pressing Ctrl-C is enough.

In particular cases where a network appliance in the middle (such as a reverse proxy) may keep the
connection alive, a control request may be sent to forcefully destroy the session on the Server. The
request has the following characteristics:

 The operation is a session destroy: LS_op=destroy

 The session ID is the one reported on the session creation response.

 The request ID to be able to match the corresponding response.

Here it is the complete call with cURL:

curl -v -N -X POST -d "LS_op=destroy&LS_session=<session-ID>&LS_reqID=3"
http://localhost:8080/lightstreamer/control.txt?LS_protocol=TLCP-2.0.0

Recall that it is a single line. See Chapter 3: Session Destroy Request for more information.

The response from the Server is:

REQOK,3

With 3 being the request ID. On the other command-line, where the stream connection is running, a
new notifications appears:

- 55 -

END,31,Destroy invoked by client

The meaning of END being that the session has been successfully destroyed. See Chapter 4: Stream
Connection End for more information.

Session Rebinding

The Session Rebinding example has the following workflow (see Chapter 2: Session Rebinding):

1. Connection and session creation.

2. Subscription to a first item on a control connection.

3. Subscription to a second item on a control connection.

4. Receive data until the Content-Length is reached.

5. Rebind the session on a new stream connection.

Session Creation and Subscription to Items
Repeating the operations of the previous example, let’s open a stream connection using a slightly
modified create session request:

curl -v -N -X POST -d "LS_adapter_set=WELCOME&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_content_length=10000"
http://localhost:8080/lightstreamer/create_session.txt?LS_protocol=TLCP-2.0.0

Recall that it is a single line. In this request we added a parameter:

 The Content-Length is forcefully limited to 10 Kbytes: LS_content_length=10000

See Chapter 3: Session Creation Request for more information.

The response from the Server looks like the following:

CONOK,Se939a67a9be2d336T3823582,50000,5000,*
SERVNAME,Lightstreamer HTTP Server
CLIENTIP,0:0:0:0:0:0:0:1
NOOP,sending placeholder data
[…]
NOOP,sending placeholder data
CONS,unlimited
PROBE
PROBE
PROBE
[…]

Recall that the underlined part is your session ID.

Let’s now subscribe to item1 and item2 with two control requests executed on a separate command
line:

curl -v -N -X POST -d
"LS_op=add&LS_subId=1&LS_data_adapter=STOCKS&LS_group=item1&LS_schema=stock_name%20time
%20last_price&LS_mode=MERGE&LS_session=<session-ID>&LS_reqID=1"
http://localhost:8080/lightstreamer/control.txt?LS_protocol=TLCP-2.0.0

curl -v -N -X POST -d
"LS_op=add&LS_subId=2&LS_data_adapter=STOCKS&LS_group=item2&LS_schema=stock_name%20time
%20last_price&LS_mode=MERGE&LS_session=<session-ID>&LS_reqID=2"
http://localhost:8080/lightstreamer/control.txt?LS_protocol=TLCP-2.0.0

- 56 -

Recall that they are single lines. Put the session ID of your session where appropriate (underlined).
See Chapter 3: Subscription Request for more information.

The response from the Server is:

REQOK,1

for the first subscription, and:

REQOK,2

for the second. On the other command-line, where the stream connection is running, some new
notifications appear:

[…]
PROBE
SUBOK,1,1,3
CONF,1,unlimited,filtered
PROBE
[…]
PROBE
SYNC,28
SUBOK,2,1,3
CONF,2,unlimited,filtered
[…]

These notifications tell us that the items have been subscribed successfully. See Chapter 4: Time
Synchronization, Successful Subscription and Subscription Reconfiguration for more information.

Receive Data Until the Content-Length Is Reached
Once subscribed, on the command-line where the stream connection is running, a number of real-time
updates appear:

[…]
U,2,1,Ations Europe|15:55:08|14.81
U,2,1,||14.66
U,2,1,|15:55:09|14.62
U,2,1,||14.71
U,2,1,|15:55:10|14.63
U,2,1,||14.77
U,2,1,|15:55:11|
U,2,1,||14.61
U,1,1,Anduct|15:55:12|3.16
U,2,1,|15:55:12|14.5
U,2,1,|15:55:13|14.64
U,2,1,|15:55:14|
U,2,1,||14.74
U,2,1,||14.66
[…]

The subscription to item2, in fact, sends real-time updates with an average period of 500 milliseconds.
This is intentional: by using this frequently changing item the stream connection reaches its content-
length in a just a few minutes.

Once the stream connection reaches the content-length, the connection terminates with a notification:

U,2,1,|15:57:51|16.27
U,2,1,||16.24
U,2,1,||16.11
U,2,1,|15:57:52|15.99
U,2,1,||15.93
LOOP,0

- 57 -

The LOOP notification tells that the session must be rebound. Its only argument is the expected delay: a
0 here means that the session should be rebound as soon as possible, with no delay.

Rebind the Session on a New Stream Connection
To rebind the session we need a request that specifies:

 The session ID reported on the session creation response.

 The name is that of a session rebind request: bind_session

Here it is the complete call with cURL:

curl -v -N -X POST -d "LS_session=<session-ID>"
http://localhost:8080/lightstreamer/bind_session.txt?LS_protocol=TLCP-2.0.0

Recall that it is a single line. Put the session ID of your session where appropriate (underlined). See
Chapter 3: Session Binding Request for more information.

The Server responds with a new stream connection and immediately starts sending updates for
previous subscriptions:

CONOK,Se939a67a9be2d336T3823582,50000,5000,*
SERVNAME,Lightstreamer HTTP Server
CLIENTIP,0:0:0:0:0:0:0:1
NOOP,sending placeholder data
[…]
NOOP,sending placeholder data
CONS,unlimited
U,2,1,|15:57:53|17.7
U,2,1,||17.81
U,2,1,|15:57504|17.72
U,2,1,||17.62
U,2,1,||17.74
[…]

Sending And Receiving Messages

The following example has no corresponding diagram in Chapter 2, but its workflow is relatively
simple:

1. Connection and session creation.

2. Subscription to an item on a control connection.

3. Send a message.

4. Receive a message echo on the item.

Session Creation and Subscription to an Item
Repeating the operations of the previous example, let’s open a stream connection using a create
session request:

curl -v -N -X POST -d "LS_adapter_set=WELCOME&LS_cid=mgQkwtwdysogQz2BJ4Ji
%20kOj2Bg&LS_send_sync=false" http://localhost:8080/lightstreamer/create_session.txt?
LS_protocol=TLCP-2.0.0

Recall that it is a single line. See Chapter 3: Session Creation Request for more information.

- 58 -

By adding “LS_send_sync=false” we will now get rid of the SYNC notifications on the stream
connection.

The response from the Server looks like the following:

CONOK,Sa5268cc2d401967bT4311553,50000,5000,*
SERVNAME,Lightstreamer HTTP Server
CLIENTIP,0:0:0:0:0:0:0:1
NOOP,sending placeholder data
[…]
NOOP,sending placeholder data
CONS,unlimited
PROBE
PROBE
PROBE
[…]

Recall that the underlined part is your session ID.

The item we are now going to subscribe is not part of the “STOCKS” Data Adapter, but rather the
“CHAT” Data Adapter. This adapter provides the following:

 A single item named “chat_room” that simulates a simple chat feed.

 Field names are the following: “timestamp”, “message”, “IP”, “nick”.

 For this data model the appropriate subscription mode is “DISTINCT”. For more
information on subscription modes see Chapter 1: Subscription Data Model.

Let’s now subscribe to chat_room with a control request executed on a separate command line:

curl -v -N -X POST -d
"LS_op=add&LS_subId=1&LS_data_adapter=CHAT&LS_group=chat_room&LS_schema=timestamp
%20message&LS_mode=DISTINCT&LS_session=<session-ID>&LS_reqID=1"
http://localhost:8080/lightstreamer/control.txt?LS_protocol=TLCP-2.0.0

Recall that it is a single line. Put the session ID of your session where appropriate (underlined). See
Chapter 3: Subscription Request for more information.

The response from the Server is:

REQOK,1

As usual, on the other command-line, where the stream connection is running, some new notifications
appear:

[…]
PROBE
SUBOK,1,1,2
CONF,1,unlimited,filtered
PROBE
[…]

These notifications tell us that the item has been subscribed successfully. See Chapter 4: Time
Synchronization, Successful Subscription and Subscription Reconfiguration for more information.

Send a Message and Receive its Echo
To send a message we need a request with the following characteristics:

 The content of the message is just a well-known international salute: LS_message=CHAT|Ciao

- 59 -

 The “CHAT|” part of the message content is not part of the protocol, it’s just a second-
level syntax in use by this specific Metadata Adapter. The complete message content is
in fact “CHAT|Ciao”, but the adapter will strip out up to the pipe and forward just “Ciao” to
the chat feed.

 The progressive number of the message: LS_msg_prog=1

 The session ID is the one reported on the session creation response.

 The request ID to be able to match the corresponding response.

 A sequence to which the message belongs may be added, if the message should be kept in
order with others.

 Finally, the name is that of a message send request: msg

Here it is the complete call with cURL:

curl -v -N -X POST -d "LS_session=<session-ID>&LS_message=CHAT|
Ciao&LS_msg_prog=1&LS_reqId=2" http://localhost:8080/lightstreamer/msg.txt?
LS_protocol=TLCP-2.0.0

Recall that it is a single line. Put the session ID of your session where appropriate (underlined). See
Chapter 3: Message Send Request for more information.

The response from the Server is:

REQOK,2

In the case of messages, this standard response also acts as an acknowledge from the Server,
meaning that the message has been correctly received and enqueued for processing.

On the other command-line, where the stream connection is running, some new notifications appear:

[…]
PROBE
MSGDONE,*,1
U,1,1|13:07:00|Ciao
PROBE
[…]

The meaning being:

 The MSGDONE notification tells that the message has been processed by the Server and delivered
to the Metadata Adapter. Its arguments are the sequence of the message (we did not specify
it, and hence it is an asterisk “*”) and the progressive number of the message.

 The real-time update reports the message as part of the chat feed, with the two fields being
the timestamp and the message content.

The real-time update is, in fact, the echo of our previous message. See Chapter 4: Message
Successfully Sent and Real-Time Update for more information on these notifications.

- 60 -

Appendix A: Session Error Codes

The following error codes may be used with session error responses such as CONERR, or by session
notifications such as END:

 1

User/password check failed.

 2

Requested Adapter Set not available.

 3

The session specified on a bind_session request was initiated with a different and incompatible
communication protocol.

 7

Licensed maximum number of actively started sessions reached (this can only happen with
some licenses).

 8

Configured maximum number of actively started sessions reached.

 9

Configured maximum server load reached on a create_session request.

 10

New sessions temporarily blocked.

 11

Streaming is not available because of Server license restrictions (this can only happen with
special licenses).

 20

Specified session not found on a bind_session request.

 31

The session was closed (possibly by the administrator) through a destroy request.

 32

The session was closed by the administrator through JMX.

 33, 34

An unexpected error occurred on the Server while the session was in activity.

- 61 -

 35

The Metadata Adapter only allows a limited number of sessions for the current user and has
requested the closure of the current session upon opening of a new session for the same user
by some client.

 40

A manual rebind to this session has been performed by some client.

 48

The maximum session duration configured on the Server has been reached. This is only meant
as a way to refresh the session (for instance, to force a different association in a clustering
scenario), hence the client should recover by opening a new session immediately.

 60

Client version not supported with the current Server.

 64

Generic error in the control request part of a session/control combo request.

 65

Syntax error or invalid values specified for one or more arguments.

 66

Unchecked exception thrown in the Metadata Adapter while managing a create_session
request.

 67

Malformed request.

 68

An unexpected error occurred on the Server while managing the request.

 69

Streaming request on a WebSocket not allowed, as a streaming in already in place.

 ≤ 0

If the code is 0 or negative, it has been supplied by the Metadata Adapter and the
interpretation is application-specific. In particular if used with and END notification, means the
session was closed by an Administrator with a destroy command and the code was supplied as
a custom cause code.

- 62 -

Appendix B: Control Error Codes

The following cause codes may be used with control error responses such as REQERR and ERROR:

 13

Subscription frequency reconfiguration not allowed because the subscription is configured for
unfiltered dispatching.

 15

Subscription to an item in COMMAND mode with no “key” field in the schema.

 16

Subscription to an item in COMMAND mode with no “command” field in the schema.

 17

Bad Data Adapter name or default Data Adapter not defined.

 19

Specified subscription not found.

 20

Specified session not found.

 21

Bad Item Group name.

 22

Bad Item Group name for this Field schema.

 23

Bad Field schema name.

 24

Subscription mode not allowed for an Item.

 25

Bad Selector name.

 26

Unfiltered dispatching not allowed for an Item, because a frequency limit is associated to the
Item.

 27

- 63 -

Unfiltered dispatching not supported for an Item, because a frequency prefiltering is applied for
the Item.

 28

Unfiltered dispatching is not allowed by the current license terms.

 29

RAW mode is not allowed by the current license terms.

 30

Subscriptions are not allowed by the current license terms (for special licenses only).

 32

The specified message progressive number is too low: either a message with this number has
already been enqueued (and possibly processed) or the number has already been skipped by
timeout (the exact case cannot be determined).

 33

The specified message progressive number is too low: a message with this number has already
been enqueued (and possibly processed).

 34

An unexpected error occurred on the Server while managing the message (for instance, a
NotificationException was thrown by the Metadata Adapter).

 35

Unchecked exception thrown in the Metadata Adapter while managing the message.

 38

The specified progressive number has been skipped by timeout.

 39

The specified progressive number and some consecutive preceding numbers have been
skipped by timeout; only in this case, err_code is an integer and specifies how many
progressive numbers have been skipped; the notification pertains to all those progressive
numbers.

 65

Syntax error or invalid values specified for one or more arguments.

 66

Unchecked exception thrown in the Metadata Adapter while managing a subscription or
reconfiguration request.

 67

Malformed request.

- 64 -

 68

An unexpected error occurred on the Server while managing the request.

 ≤ 0

If the code is 0 or negative, it has been supplied by the Metadata Adapter and the
interpretation is application-specific.
This can affect subscription requests and message processing.

- 65 -

Appendix C: Server HTTP Headers

The following tables report Lightstreamer Server use of common HTTP headers for both requests and
responses.

HTTP Request Headers

General Header Fields

Header Use

Cache-Control Ignored

Keep-Alive Ignored (obsolete)

Date Ignored

Pragma Ignored

Trailer Ignored

Transfer-Encoding Handled (only the chunked case)

Via Ignored

Warning Ignored

Request Header Fields

Header Use

Accept Ignored

Accept-Charset Ignored

Accept-Encoding Handled (only the gzip case)

Accept-Language Ignored

From Ignored

If-Match Ignored

If-None-Match Ignored

If-Range Ignored

If-Unmodified-Since Ignored

Range Ignored

TE Ignored

- 66 -

Entity Header Fields

Header Use

Content-Base Ignored (obsolete)

Content-Encoding Handled (not all cases)

Content-Language Ignored

Content-Location Ignored

Content-MD5 Ignored

Content-Range Partially handled: if specified the request is
refused

Content-Type Partially handled: if not compatible the request is
processed anyway

Content-Type charset Handled: relies to charset availability in the JVM

Expires Ignored

Last-Modified Ignored

Extension headers Ignored

HTTP Response Headers

General Header Fields

Header Use

Cache-Control Used

Pragma Used

Trailer Not used

Transfer-Encoding Used

Transfer-Encoding chunk-extension Not used

Transfer-Encoding trailer Not used

Warning Not used

- 67 -

Response Header Fields

Header Use

Accept-Ranges Not used

Age Not used

ETag Not used

Location Not used

Proxy-Authenticate Not used

Public Not used (obsolete)

Retry-After Not used

Vary Not used

Entity Header Fields

Header Use

Allow Not used

Content-Base Not used (obsolete)

Content-Encoding Used

Content-Language Not used

Content-Location Not used

Content-MD5 Not used

Content-Range Not used

Content-Type Used

Expires Used

Extension headers Not used

- 68 -

	1 Introduction
	The Text Lightstreamer Client Protocol, or TLCP for short, is the main protocol used by Lightstreamer clients to connect, receive and send data to a Lightstreamer Server.
	NOTE: To fully understand how TLCP works, a general understanding of the main Lightstreamer concepts is a prerequisite. Terms like Adapter Set, Metadata Adapter, Data Adapter should be familiar. Knowledge of this components may be obtained by reading the first chapters of the General Concepts document.
	Protocol Versions

	The TLCP protocol can evolve over time and it is versioned in the form:
	major.minor.subminor
	Example: 2.0.0
	The general rule is that if only the subminor version number changes, no upgrades to the Lightstreamer Server are required to support the new version of TLCP.
	Example:
	Lightstreamer Server v. 6.1 is released, with support for TLCP v. 2.0.0.
	Later on, Lightstreamer Server v. 6.2 is released, which, among other things, introduces explicit support for TLCP v. 2.0.3.
	A client is developed against TLCP v. 2.0.3. Such client is guaranteed to work even if it connects to Lightstreamer Server v. 6.1, because that server supports TLCP v. 2.0.x.
	On the other hand, any new version of Lightstreamer Server is guaranteed to work with any previous version of TLCP.
	Main Concepts

	Some of the main concepts of TLCP are the following:
	Communication between client and Server always operates inside the context of a session. Each session has a specific session ID.
	A session must be bound to a network connection in order to receive downstream real-time notifications and in particular real-time updates. The connection to which a session is bound is called the stream connection of that session.
	The session creation request provides both a session and its initial stream connection. The session may be later bound to a different stream connection with a session binding request.
	Real-time updates are organized into items and fields. The set of items and fields for which real-time updates are received can be changed by means of session control requests.
	Control requests, depending on the transport, may be sent on separate network connections or on the session stream connection.
	The control request that adds new items to the set being received is called a subscription. The opposite control request, that removes items and fields from the set, is called an unsubscription.
	A specific subset of control requests is dedicated to sending upstream messages.
	Transports

	TLCP supports two different transports:
	HTTP (and HTTPS).
	WebSocket, or WS for short (and Secure WebSocket, or WSS for short).
	The protocol is designed to minimize differences on the two transports, while still leveraging transport-specific advantages, e.g. with HTTP the stream connection is implemented as an HTTP request whose response is of (almost) infinite length. On the other hand, since HTTP is a half-duplex transport, each control request requires a separate connection, parallel to the main stream connection.
	With WS, which is a full-duplex transport, the stream connection is a simple WS connection and control requests may be sent directly on it, eliminating the connection overhead of HTTP.
	Transports may also be mixed: as far as the correct session ID is specified in each control request, a stream connection on WS may be controlled by control requests on HTTP and vice-versa. Mixing of transports is actively exploited by official Lightstreamer client libraries to implement the Stream-Sense algorithm, which automatically discovers the best transport to use at any given moment.
	Session Life Cycle
	Subscription Data Model
	Requests, Responses, and Notifications

	General rules apply on request and response handling:
	Control requests are always identified by a client-generated request ID. It may be any combination of letters and numbers, but typically a progressive number will do, and must be unique within the connection.
	It needs to be unique only within a reasonable amount of time, e.g. a few minutes. The Server will never respond to a request with a delay of several minutes. If you use a progressive integer, you can periodically reset the counter to avoid sending long integer strings.
	Responses (including errors) are always identified by the corresponding request ID, unless the request syntax was so misleading that a request ID could not be parsed.
	Responses (including errors) are always sent on the same connection the request was sent to:
	If the control request was sent on a separate connection, such as with HTTP transport, the response is sent on that same connection.
	If the control request was sent on the stream connection, such as with WS transport, the response is sent on the stream connection.
	If the request was successful, a notification may be sent on the stream connection (if appropriate for the request).
	Request Syntax

	Requests follow general rules for query string composition in an HTTP URL, with minor differences for the HTTP and WS cases.
	HTTP Transport
	WS Transport
	Common Response and Notification Syntax

	2 Workflow Examples
	Basic Subscription
	Double Subscription
	Field Schema Change
	Session Rebinding
	HTTP Loop and Rebind
	HTTP Loop and Failed Rebind
	WS Long Polling

	3 Request/Response Reference
	Session Creation Request
	Session Binding Request
	Session Creation and Binding Responses
	Successful Session Creation or Binding Response
	Other Session Creation or Binding Responses

	Control Requests
	Common Parameters
	Subscription Request
	Unsubscription Request
	Subscription Reconfiguration Request
	Session Constrain Request
	Force Session Rebind Request
	Session Destroy Request

	Message Send Request
	Control Responses
	Successful Control Response
	Other Control Responses

	4 Notification Reference
	Real-Time Update
	Decoding the Pipe-Separated List of Values
	Notification Examples

	Other Subscription-Related Notifications
	Successful Subscription
	Successful Subscription with Command Mode
	Successful Unsubscription
	End of Snapshot
	Snapshot Clearing
	Overflow
	Subscription Reconfiguration

	Message-Related Notifications
	Message Successfully Sent
	Message Send Failed

	Session-Related Notifications
	Session Constraints Changed
	Time Synchronization
	Client IP Address
	Server Name
	No Operation
	Probe (Keep-Alive)
	Stream Connection Loop
	Stream Connection End

	5 Special Use Cases
	Session Creation and Control Combo Request
	Session Creation and Multiple Control Combo Request

	Use of HTTP GET in Place of HTTP POST

	6 Hands On
	About cURL
	Server Setup
	Basic Subscription
	Connection and Session Creation
	Subscription to an Item
	Receive Some Data
	Unsubscription from an Item
	Disconnection

	Session Rebinding
	Session Creation and Subscription to Items
	Receive Data Until the Content-Length Is Reached
	Rebind the Session on a New Stream Connection

	Sending And Receiving Messages
	Session Creation and Subscription to an Item
	Send a Message and Receive its Echo

	Appendix A: Session Error Codes
	Appendix B: Control Error Codes
	Appendix C: Server HTTP Headers
	HTTP Request Headers
	General Header Fields
	Request Header Fields
	Entity Header Fields

	HTTP Response Headers
	General Header Fields
	Response Header Fields
	Entity Header Fields

